Run the following command to enable watsonx Orchestrate Developer Edition to process documents:
BASH
Copy
Ask AI
orchestrate server start -e <.env file path> -d
Note:
You need to configure a minimum allocation of 20GB RAM to your Docker engine during installation of watsonx Orchestrate Developer edition to support document processing features.
In your agentic workflow, include a call to the ‘docproc()’ method to process a document. This method accepts the following input arguments:
Parameter
Type
Required
Description
name
string
Yes
Unique identifier for the node.
task
string
Yes
Specifies which information is extracted from the document upon processing; supported values are:
text_extraction: Extracts plain text from documents.
display_name
string
No
Display name for the node.
description
string
No
Description of the node.
input_map
DataMap
No
Define input mappings using a structured collection of Assignment objects.
document_structure
bool
No
Controls whether the output includes additional fields as part of the document assembly. Set to true to include these fields.
kvp_schemas
list[DocProcKVPSchema]
No
The key-value pair schemas used for extraction.
enable_hw
bool
No
Enable the handwritten feature by setting this to true.
kvp_model_name
string
No
The LLM model used for key-value pair extraction. Default value is mistral-small-3-1-24b-instruct. For more information about supported KVP models, see Compatible Vision-Language Models.
kvp_force_schema_name
string
No
The schema name used for KVP extraction. If not set or None, uses the default schema.
kvp_enable_text_hints
bool
No
Enables text hints to assist with KVP extraction.
The input to a docproc node uses the DocProcInput type from the ibm_watsonx_orchestrate.flow_builder.types module. You can optionally configure the kvp_schemas parameter to define key-value pair input schemas. For more information, see Semantic Key-Value Pair (KVP) Extraction.Example use of the docproc node in a agentic workflow:
Python
Copy
Ask AI
from pydantic import BaseModel, Fieldfrom ibm_watsonx_orchestrate.flow_builder.flows import ( Flow, flow, START, END)from ibm_watsonx_orchestrate.flow_builder.types import DocProcInput@flow( name ="text_extraction_flow_example", display_name="text_extraction_flow_example", description="This flow consists of one node: a docproc node, which extracts text from the input document", input_schema=DocProcInput)def build_docproc_flow(aflow: Flow = None) -> Flow: doc_proc_node = aflow.docproc( name="text_extraction", display_name="text_extraction", description="Extract text out of a document's contents.", task="text_extraction", ) aflow.sequence(START, doc_proc_node, END) return aflow
After the node runs, you receive a URL pointing to a file that contains the extracted text. If you configure key-value pair (KVP) extraction, the file also includes the extracted KVPs.
Note:
KVP schemas are only available in the SaaS editions of DocProc.
Use the kvp_schemas parameter in the text extraction task to extract semantic key-value pairs from input documents.You can define this parameter in two places:
Node specification: Set kvp_schemas in the node configuration. The node supports semantic KVP extraction in the following cases:
If you define kvp_schemas in the input, the node uses those schemas. If you pass an empty array, it falls back to default schemas.
If you don’t define kvp_schemas in the input but include them in the node specification, the node uses the specification-defined schemas. Again, if the array is empty, it defaults to the built-in schemas.
The kvp_schemas is configured as a JSON object. The following example shows how to define kvp_schemas in a node configuration.
Python
Copy
Ask AI
from pydantic import BaseModel, Fieldfrom ibm_watsonx_orchestrate.flow_builder.flows import ( Flow, flow, START, END)from ibm_watsonx_orchestrate.flow_builder.types import DocProcInput@flow( name ="kvp_extraction_flow_example_for_api", display_name="kvp_extraction_flow_example_for_api", description="This flow consists of one node: a docproc node, which extracts kvps from the input document", input_schema=DocProcInput)def build_docproc_flow(aflow: Flow = None) -> Flow: doc_proc_node = aflow.docproc( name="kvp_extraction", display_name="kvp_extraction", description="Extract kvp out of a document's contents.", task="text_extraction", kvp_schemas=[{ "document_type": "Invoice", "document_description": "An invoice is a standard document issued by a seller to a buyer, outlining products or services provided, quantities, prices, and payment terms.", "additional_prompt_instructions": "Extract values exactly as they appear in the document, especially numbers and codes.", "fields": { "invoice_number": { "description": "A unique identifier assigned by the vendor for this invoice.", "example": "2023-AUS-987654", "default": "" }, "document_date": { "description": "Date of the document.", "example": "2025-07-05", "default": "" }, "vendor_name": { "description": "Legal or trade name of the company issuing the invoice. Usually located in the header or footer, near the logo, or billing details.", "example": "ABC Supply Company Pty Ltd", "default": "" }, "vendor_number": { "description": "Internal identifier used by the buyer's system to refer to the vendor.", "example": "VEND-1023", "default": "" } } }] ) aflow.sequence(START, doc_proc_node, END) return aflow
Runtime input: Set kvp_schemas in the input payload.The following example shows how to define a kvp_schemas in the input payload.
Python
Copy
Ask AI
import asyncioimport loggingimport sysimport jsonfrom pathlib import Pathfrom examples.flow_builder.text_extraction.tools.text_extraction_flow import build_docproc_flowlogger = logging.getLogger(__name__)def on_flow_end(result): """ Callback function to be called when the flow is completed. """ print(f"Custom Handler: flow `{flow_run.name}` completed with result: {result}")def on_flow_error(error): """ Callback function to be called when the flow fails. """ print(f"Custom Handler: flow `{flow_run.name}` failed: {error}")async def main(doc_ref: str, kvp_schema_path): '''A function demonstrating how to build a flow and save it to a file.''' my_flow_definition = await build_docproc_flow().compile_deploy() global flow_name flow_name = my_flow_definition.flow.spec.display_name generated_folder = f"{Path(__file__).resolve().parent}/generated" my_flow_definition.dump_spec(f"{generated_folder}/docproc_flow_spec.json") with open(kvp_schema_path, 'r') as file: # Load the JSON data from the file into a Python dictionary schema_json = json.load(file) global flow_run flow_run = await my_flow_definition.invoke( { "document_ref": doc_ref, "language": "en", "kvp_schemas": [ schema_json ] }, on_flow_end_handler=on_flow_end, on_flow_error_handler=on_flow_error, debug=True)if __name__ == "__main__": if len(sys.argv) != 3: logger.error(f"Usage: {sys.argv[0]} file_store_path kvp_schema_path") else: asyncio.run(main(sys.argv[1], sys.argv[2]))
For both the node specification and runtime input, the default value of kvp_schemas is null. If you define the parameter in both places, the runtime input takes precedence and overrides the node specification. To use predefined extraction schemas, pass an empty array (kvp_schemas: []).Use kvp_force_schema_name to specify the schema name for KVP extraction. Use kvp_enable_text_hints to enable or disable text hints during extraction. Configure both settings inside the docproc() node.
Python
Copy
Ask AI
@flow( name="text_extraction_kvps_flow_example", display_name="Text Extraction with KVP Extraction Flow", description=( "This flow consists of one node: a docproc node, which extracts text " "and custom key-value pairs from the input document using a predefined schema" ), input_schema=DocProcInput, ) def build_docproc_flow(aflow: Flow) -> Flow: """ Build a text extraction flow with Key-Value Pair (KVP) extraction capabilities. This flow creates a document processing pipeline that: 1. Extracts raw text content from input documents 2. Identifies and extracts structured key-value pairs based on a predefined schema The KVP extraction uses a schema-driven approach to identify specific fields like company information, invoice numbers, dates, and line items from invoices. Runtime Parameter Override: All KVP-related parameters (kvp_schemas, kvp_model_name, kvp_force_schema_name, kvp_enable_text_hints) can be provided at runtime when invoking the flow. Runtime values will override the default values configured in this flow definition. This allows for dynamic configuration without modifying the flow code. Args: aflow: Flow builder instance provided by the @flow decorator. Returns: Flow: Configured text extraction flow with KVP extraction (START → docproc_node → END) Example: >>> flow = build_docproc_flow() >>> # Flow will extract text and KVPs from documents """ # Validate Flow instance (defensive programming) assert aflow is not None, "Flow instance must be provided by the @flow decorator" try: # Get the KVP schema for invoice processing kvp_schemas = get_sample_invoice_kvp_schema() # Create document processing node configured for text and KVP extraction doc_proc_node = aflow.docproc( name="text_extraction_with_kvp_node", display_name="Text Extraction with KVP Node", description="Extracts raw text and structured key-value pairs from an input document", task="text_extraction", # KVP extraction parameters. # Note: All kvp_* parameters below can be overridden at runtime when invoking the flow. # Runtime values take precedence over these default configuration values. kvp_schemas=kvp_schemas, # type: ignore[arg-type] # Can be overridden at runtime # Optional: Uncomment to use a specific LLM for KVP extraction. This defaults to mistral-small. (can be overridden at runtime) kvp_model_name="watsonx/mistralai/mistral-small-3-1-24b-instruct-2503", # Optional: Uncomment to force a specific schema (can be overridden at runtime) kvp_force_schema_name="MyInvoice", # The "document_type" that will be used for KVP extraction. If not specified, the engine will try to match the input document to the given schemas. # Optional: Enable/disable text hints for KVP extraction (can be overridden at runtime) kvp_enable_text_hints=True, ) # Connect nodes in sequence: START → doc_proc_node → END aflow.sequence(START, doc_proc_node, END) logger.info("Text extraction with KVP flow built successfully") return aflow except Exception as e: logger.error(f"Failed to build text extraction KVP flow: {e}", exc_info=True) raise